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Concepts and Methods of 2D Infrared
Spectroscopy

Peter Hamm and Martin T. Zanni

Answer Keys: Chapter 2

Problem 2.1: Verify Eq. 2.8

Solution: We substitute Eq. 2.7 into the left-hand side of Eq. 2.6 and apply
the chain rule:

i~
∂

∂t

(∑
n

cne−iEnt/~|n〉
)

= i~
∑

n

∂cn

∂t
e−iEnt/~|n〉+

∑
n

Encne−iEnt/~|n〉

The second term just equals Ĥ0Ψ, since the |n〉 are eigenfunctions of the
system Hamiltonian, so:
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n

∂cn

∂t
e−iEnt/~|n〉 = Ŵ (t)

(∑
n

cne−iEnt/~|n〉
)

We now multiply this equation from left with 〈m|, make use of the fact that
the wavefunctions are orthonormal, 〈m|n〉 = δm,n, and obtain the final result
Eq. 2.8.

Problem 2.2: With Eq. 2.37, show that the macroscopic polarization of
state Eq. 2.30 is maximal, and that of an incoherent state Eq. 2.32 is zero.

Solution: We start with Eq. 2.32:

Tr(ρµ) = Tr
((

1/2 0
0 1/2

)(
0 1
1 0

))
= Tr

(
0 1/2

1/2 0

)
= 0

For Eq. 2.30

Tr(ρµ) = Tr
((

1/2 −i/2
+i/2 1/2

)(
0 1
1 0

))
= Tr

( −i/2 1/2
1/2 i/2

)
= 0
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we get zero as well. However, if we include the time propagation of such a
density matrix:

Tr(ρµ) = Tr
((

1/2 −i/2eiω01t

+i/2e−iω01t 1/2

)(
0 1
1 0

))

= Tr
( −i/2eiωt 1/2

1/2 i/2e−iωt

)
= sin ωt

we see that it oscillates with amplitude one.

Problem 2.3: Calculate the evolution of the density matrix for R2 and R5

in a manner that is analogous to Eq. 2.68. In what aspect are they different
from R1 and R4?

Solution: For R2 :
(

1 0
0 0

)
iρµ0−→

(
0 i

0 0

)
t1−→

(
0 ie+iω01t1

0 0

)
iρµ0µ1−→

(
ie+iω01t1 0

0 0

)
iµ2ρµ0µ1−→

(
0 0

ie+iω01t1 0

)
t3−→

(
0 0

ie−iω01(t3−t1) 0

)
i〈µ3µ2ρµ0µ1〉−→ ie−iω01(t3−t1)

and for R5 :
(

1 0
0 0

)
iµ0ρ−→

(
0 0
i 0

)
t1−→

(
0 0

ie−iω01t1 0

)
iµ1µ0ρ−→

(
ie−iω01t1 0

0 0

)
iµ2µ1µ0ρ−→

(
0 0

ie−iω01t1 0

)
t3−→

(
0 0

ie−iω01(t3+t1) 0

)
i〈µ3µ2µ1µ0ρ〉−→ ie−iω01(t3+t1)

R2 and R5 have a ρ00 matrix element after the second field interaction,
rather than a ρ11 matrix element. We say that these diagrams go through
the ground state during the population time t2.

Problem 2.4: Repeat the calculation of the propagation of the density
matrix analogous to Eqns. 2.43, 2.44 and 2.50 with the first field interaction
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acting from the left, however, now starting out from an excited state with:

ρ(−∞) =
(

0 0
0 1

)
.

Prove that E∗(t) ∝ e+iω01t now survives the rotating wave approximation,
whereas the term related to E(t) ∝ e−iω01t vanishes. Draw the correspond-
ing Feynman diagram.

Solution:
(

0 0
0 1

)
iµ0ρ−→

(
0 i

0 0

)
t1−→

(
0 ieiω01t1

0 0

)
iµ0ρµ1−→

(
ieiω01t1 0

0 0

)
i〈µ0ρµ1〉−→ ieiω01(t1)

Plugging this into Eq. 2.56, we get:

P (1)(t) ∝ ie−iωt

∞∫

0

dt1E
′(t− t1)e−t1/T2e+2iωt1

+ie+iωt

∞∫

0

dt1E
′(t− t1)e−t1/T2 . (0.1)

The term in the first integral is highly oscillating, hence the integral will be
very small. The corresponding Feynman diagram is:

11

10

00

Problem 2.5: The trace is invariant under cyclic permutation, so
〈µ(t1)µ(0)ρ(−∞)〉 = 〈µ(0)ρ(−∞)µ(t1)〉. By convention we choose the left
term, but the right one is mathematically identical. Plot the corresponding
Feynman diagram for the right term, taking into account the rotating wave
approximation, and discuss how it might be interpreted.

Solution: The corresponding Feynman diagram would be:
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00

01

11

hence, it ends in an excited state |1〉〈1|. This is often used as another answer
to resolve the paradox in Sect. 2.5. That is, the fact that we end in the
ground state |0〉〈0| is the result of an arbitrary (but common) convention
of plotting Feynman diagram. If one were to use the other representation,
which is mathematically equivalent, energy conservation is guaranteed.

Problem 2.6: Draw a Feynman-diagram that emits in +~k1 + ~k2 − ~k3

direction.

Solution:

01

02
01

00

00

Problem 2.7: Draw a Feynman-diagram that emits in +~k1 + ~k2 + ~k3

direction. At what frequency will it emit?

Solution:

01

02
03

00

00

This diagram will emit at three times the incident laser frequency (third
harmonic).
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Problem 2.8: In Fig. 2.14, find the phase matching conditions for the
5th-order beams. In each case, think of a corresponding Feynman diagram,
assuming that you can apply the rotating wave approximation. Hint: In
some cases, you will need more than a two-level system, e.g. a slightly
anharmonic oscillator with a set of almost equidistant quantum states.

Solution:

k3

k2k1

-2k1+2k2+k3+2k1-2k2+k3

-2k1+3k2

-2k1+k2+2k3k1-2k2+2k3

3k1-2k2

3k1-k2-k3

3k1-2k3

-k1+3k2-k3

2k1+k2-2k3 k1+2k2-2k3

3k2-2k3

-2k2+3k3 -2k1+3k3
-k1-k2+3k3

For example, one possible Feynman diagram observed in the 2k1−2k2+k3

phase matching direction would be:

01

02

01

00

00

00
01


