Concepts and Methods of 2D Infrared Spectroscopy

Peter Hamm and Martin T. Zanni

Answer Keys: Chapter 3

Problem 3.1: Show that one obtains $\rho=\rho^{2}$ for the density matrix of a pure state. Show that this is no longer true for a density matrix of a statistical average. Verify these results for the examples $\rho=\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right)$ and $\rho=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right)$.

Solution:

For the density matrix of a pure state described by a wavefunction Ψ, we have:

$$
\rho=|\Psi\rangle\langle\Psi|
$$

so

$$
\rho^{2}=|\Psi\rangle\langle\Psi \mid \Psi\rangle\langle\Psi|=|\Psi\rangle\langle\Psi|
$$

since the middle part, $\langle\Psi \mid \Psi\rangle$, is the norm of the wavefunction, which we assume to be one.

$$
\begin{aligned}
& \text { For } \rho=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right) \text {, we get: } \\
& \qquad \rho^{2}=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right) \cdot\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
\end{aligned}
$$

and for $\rho=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right)$:

$$
\rho^{2}=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right) \cdot\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)=\left(\begin{array}{cc}
1 / 4 & 0 \\
0 & 1 / 4
\end{array}\right)
$$

Problem 3.2: Verify that there is no wavefunction $|\psi\rangle$ whose density matrix would be $\rho=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right)$
Solution: The diagonal elements of a density matrix are defined as $c_{n} c_{m}^{*}$. From the two diagonal element, one would conclude $c_{0}=1 / \sqrt{2}$ and $c_{1}=$ $1 / \sqrt{2}$ (modulo an undetermined phase factor, but then, if it were a pure state, the off-diagonal element would be $\rho_{01}=c_{0} c_{1}^{*}$.

Problem 3.3: Show that exactly one eigenvalue of a $n \times n$-density matrix of a pure state is 1 , while all others are zero. Hint: Start with $\rho=\rho^{2}$. Diagonalize with a matrix Q and compare the diagonal elements.

Solution:

Let Q be the unitary transformation matrix that diagonalizes ρ (which exists since ρ is hermitian). Then:

$$
Q^{-1} \rho Q=D
$$

with D a diagonal matrix with the real eigenvalues of ρ. We calculate

$$
D^{2}=Q^{-1} \rho Q Q^{-1} \rho Q=Q^{-1} \rho \rho Q=Q^{-1} \rho Q=D
$$

Since D is diagonal, each diagonal element must fulfill $d_{i i}^{2}=d_{i i}$. The only numbers which fulfill this equation are $d_{i i}=0$ or $d_{i i}=1$. Furthermore, the transformation preserves the trace:

$$
\operatorname{Tr}(\mathrm{D})=\operatorname{Tr}\left(\mathrm{Q}^{-1} \rho \mathrm{Q}\right)=\operatorname{Tr}\left(\rho \mathrm{QQ}^{-1}\right)=\operatorname{Tr}(\rho)=1 .
$$

Since the diagonal elements of D are either 0 or 1 , and their sum is 1 , only one diagonal element can be 1 and all other are 0 .

Problem 3.4: Starting from the definition of the trace of a matrix, $\operatorname{Tr}(\mathrm{A}) \equiv$ $\sum_{n} A_{n n}$, show that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$. Show furthermore that the trace is invariant to cyclic permutation, $\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)=\operatorname{Tr}(B C A)$.

Solution: One particular element of the product of two matrices A and B is:

$$
(A B)_{n m}=\sum_{k} A_{n k} B_{k m}
$$

With that:

$$
\operatorname{Tr}(\mathrm{AB}) \equiv \sum_{\mathrm{n}}(\mathrm{AB})_{\mathrm{nn}}=\sum_{\mathrm{n}, \mathrm{k}} \mathrm{~A}_{\mathrm{nk}} \mathrm{~B}_{\mathrm{kn}}=\sum_{\mathrm{n}, \mathrm{k}} \mathrm{~B}_{\mathrm{kn}} \mathrm{~A}_{\mathrm{nk}}=\operatorname{Tr}(\mathrm{BA}) .
$$

Then:

$$
\operatorname{Tr}((\mathrm{AB}) \mathrm{C})=\operatorname{Tr}(\mathrm{C}(\mathrm{AB})) .
$$

etc.

Problem 3.5: Show that the trace of any density matrix is indeed $\operatorname{Tr}(\rho)=1$.
Solution: For a pure state:

$$
\operatorname{Tr}(\rho)=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}^{*}=1
$$

results from the normalization of the wave function. For a mixed state, Eq. 3.22, the same holds as long as each wavefunction ψ_{s} is normalized and the statistical distribution is normalized as well, $\sum_{s} p_{s}=1$.

Problem 3.6: Show that the length of a Bloch vector corresponding to a pure state is unity.

Solution: With Eq. 2.16, one obtains with a little bit of algebra for the length of the Bloch vector:

$$
B_{x}^{2}+B_{y}^{2}+B_{z}^{2}=\left(c_{0} c_{0}^{*}+c_{1} c_{1}^{*}\right)^{2}=1
$$

due to the normalization of the wavefunction.

Problem 3.7: Derive Eq. 3.33 starting from Eq. 3.32. Hint: Do a change of variables using $\rho_{n m}^{(1)}(\tau)=S_{n m}^{(1)}(\tau) e^{-\left(i \omega_{m n}+\frac{1}{T_{2}}\right) \tau}$. Then integrate from $\tau^{\prime}=$ $-\infty$ to τ. Finally, switch to relative time-delays.

Solution: This solution follows that of Boyd[16]. Start by doing a change of in Eq. 3.32 using

$$
\begin{equation*}
\rho_{n m}^{(1)}(\tau)=S_{n m}^{(1)}(\tau) e^{-\left(i \omega_{m n}+\frac{1}{T_{2}}\right) \tau} \tag{0.1}
\end{equation*}
$$

4

$$
\dot{\rho}_{n m}^{(1)}(\tau)=-\left(i \omega_{m n}+\frac{1}{T_{2}}\right) S_{n m}^{(1)}(\tau) e^{-\left(i \omega_{m n}+\frac{1}{T_{2}}\right) \tau}+\dot{S}_{n m}^{(1)}(\tau) e^{-\left(i \omega_{m n}+\frac{1}{T_{2}}\right) \tau}
$$

Substitute

$$
\begin{gather*}
-\left(i \omega_{m n}+\frac{1}{T_{2}}\right) S_{n m}^{(1)}(\tau) e^{-\left(i \omega_{m n}+\frac{1}{T_{2}}\right) \tau}+\dot{S}_{n m}^{(1)}(\tau) e^{-\left(i \omega_{m n}+\frac{1}{T_{2}}\right) \tau}= \\
-\left(i \omega_{m n}+\frac{1}{T_{2}}\right) S_{n m}^{(1)}(\tau) e^{-\left(i \omega_{m n}+\frac{1}{T_{2}}\right) \tau}-\frac{i}{\hbar}\left[\hat{W}(\tau), \rho^{(0)}\right]_{n m} \tag{0.2}
\end{gather*}
$$

to get

$$
\begin{equation*}
\dot{S}_{n m}^{(1)}(\tau)=-\frac{i}{\hbar}\left[\hat{W}(\tau), \rho^{(0)}\right]_{n m} e^{+\left(i \omega_{m n}+\frac{1}{T_{2}}\right) \tau} \tag{0.3}
\end{equation*}
$$

Integrate

$$
\begin{equation*}
S_{n m}^{(1)}(\tau)=-\frac{i}{\hbar} \int_{-\infty}^{\tau}\left[\hat{W}\left(\tau^{\prime}\right), \rho^{(0)}\right]_{n m} e^{+\left(i \omega_{m n}+\frac{1}{T_{2}}\right) \tau^{\prime}} d \tau^{\prime} \tag{0.4}
\end{equation*}
$$

Change variables back by substituting into Eq. 0.1

$$
\begin{equation*}
\rho_{n m}^{(1)}(\tau)=-\frac{i}{\hbar} \int_{\tau^{\prime}=-\infty}^{\tau^{\prime}=\tau}\left[\hat{W}\left(\tau^{\prime}\right), \rho^{(0)}\right]_{n m} e^{-\left(i \omega_{m n}+\frac{1}{T_{2}}\right)\left(\tau-\tau^{\prime}\right)} d \tau^{\prime} \tag{0.5}
\end{equation*}
$$

Put into relative delay times using $t=\tau$ and $t_{1}=\tau-\tau^{\prime}$ so that when $\tau^{\prime}=-\infty$ then $t=+\infty$ and when $\tau^{\prime}=\tau, t=0$ (see figure below), which gives

$$
\begin{equation*}
\rho_{n m}^{(1)}(t)=+\frac{i}{\hbar} \int_{0}^{\infty}\left[\hat{W}\left(t-t_{1}\right), \rho^{(0)}\right]_{n m} e^{-\left(i \omega_{m n}+\frac{1}{T_{2}}\right) t_{1}} d t_{1} \tag{0.6}
\end{equation*}
$$

Problem 3.8: Derive Eq. 3.49.

Solution: We define the density matrix of a pure state in the interaction picture:

$$
\rho_{I}=\left|\psi_{I}\right\rangle\left\langle\psi_{i}\right|
$$

Eq. 3.40 is formally equivalent to the time-dependent Schrödinger equation Eq. 3.18, replacing ψ by ψ_{I} and \hat{H} by \hat{W}_{I}. Performing the same steps as

Eqs. 3.19 and 3.20, we obtain Eq. 3.49 for a pure state. Since this equation is linear in ρ_{I}, it also holds for a statistical average with

$$
\rho_{I}=\sum_{s} p_{s} \rho_{I}^{(s)}
$$

