Concepts and Methods of 2D Infrared Spectroscopy

Peter Hamm and Martin T. Zanni

Answer Keys: Chapter 3

Problem 3.1: Show that one obtains $\rho = \rho^2$ for the density matrix of a pure state. Show that this is no longer true for a density matrix of a statistical average. Verify these results for the examples $\rho = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$ and $\rho = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$.

Solution:

For the density matrix of a pure state described by a wavefunction $\Psi,$ we have:

$$\rho = |\Psi\rangle\langle\Psi|$$

 \mathbf{SO}

$$\rho^2 = |\Psi\rangle \langle \Psi |\Psi\rangle \langle \Psi| = |\Psi\rangle \langle \Psi|$$

since the middle part, $\langle \Psi | \Psi \rangle$, is the norm of the wavefunction, which we assume to be one.

For
$$\rho = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$
, we get:

$$\rho^2 = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} \cdot \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$

and for $\rho = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$:

$$\rho^{2} = \begin{pmatrix} 1/2 & 0\\ 0 & 1/2 \end{pmatrix} \cdot \begin{pmatrix} 1/2 & 0\\ 0 & 1/2 \end{pmatrix} = \begin{pmatrix} 1/4 & 0\\ 0 & 1/4 \end{pmatrix}$$

Problem 3.2: Verify that there is no wavefunction $|\psi\rangle$ whose density matrix would be $\rho = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$

Solution: The diagonal elements of a density matrix are defined as $c_n c_m^*$. From the two diagonal element, one would conclude $c_0 = 1/\sqrt{2}$ and $c_1 = 1/\sqrt{2}$ (modulo an undetermined phase factor, but then, if it were a pure state, the off-diagonal element would be $\rho_{01} = c_0 c_1^*$.

Problem 3.3: Show that exactly one eigenvalue of a $n \times n$ -density matrix of a pure state is 1, while all others are zero. Hint: Start with $\rho = \rho^2$. Diagonalize with a matrix Q and compare the diagonal elements.

Solution:

Let Q be the unitary transformation matrix that diagonalizes ρ (which exists since ρ is hermitian). Then:

$$Q^{-1}\rho Q = D$$

with D a diagonal matrix with the real eigenvalues of ρ . We calculate

$$D^{2} = Q^{-1}\rho Q Q^{-1}\rho Q = Q^{-1}\rho \rho Q = Q^{-1}\rho Q = D.$$

Since D is diagonal, each diagonal element must fulfill $d_{ii}^2 = d_{ii}$. The only numbers which fulfill this equation are $d_{ii} = 0$ or $d_{ii} = 1$. Furthermore, the transformation preserves the trace:

$$\operatorname{Tr}(\mathbf{D}) = \operatorname{Tr}(\mathbf{Q}^{-1}\rho\mathbf{Q}) = \operatorname{Tr}(\rho\mathbf{Q}\mathbf{Q}^{-1}) = \operatorname{Tr}(\rho) = 1.$$

Since the diagonal elements of D are either 0 or 1, and their sum is 1, only one diagonal element can be 1 and all other are 0.

Problem 3.4: Starting from the definition of the trace of a matrix, $\text{Tr}(A) \equiv \sum_{n} A_{nn}$, show that Tr(AB) = Tr(BA). Show furthermore that the trace is invariant to cyclic permutation, Tr(ABC) = Tr(CAB) = Tr(BCA).

Solution: One particular element of the product of two matrices A and B is:

$$(AB)_{nm} = \sum_{k} A_{nk} B_{km}$$

With that:

$$\mathrm{Tr}(AB) \equiv \sum_n (AB)_{nn} = \sum_{n,k} A_{nk} B_{kn} = \sum_{n,k} B_{kn} A_{nk} = \mathrm{Tr}(BA).$$

Then:

$$Tr\left((AB)C\right) = Tr\left(C(AB)\right).$$

etc.

Problem 3.5: Show that the trace of any density matrix is indeed $Tr(\rho) = 1$.

Solution: For a pure state:

$$\mathrm{Tr}\left(\rho\right) = \sum_{i} c_{i}c_{i}^{*} = 1$$

results from the normalization of the wave function. For a mixed state, Eq. 3.22, the same holds as long as each wavefunction ψ_s is normalized and the statistical distribution is normalized as well, $\sum_s p_s = 1$.

Problem 3.6: Show that the length of a Bloch vector corresponding to a pure state is unity.

Solution: With Eq. 2.16, one obtains with a little bit of algebra for the length of the Bloch vector:

$$B_x^2 + B_y^2 + B_z^2 = (c_0 c_0^* + c_1 c_1^*)^2 = 1$$

due to the normalization of the wavefunction.

Problem 3.7: Derive Eq. 3.33 starting from Eq. 3.32. Hint: Do a change of variables using $\rho_{nm}^{(1)}(\tau) = S_{nm}^{(1)}(\tau)e^{-\left(i\omega_{mn}+\frac{1}{T_2}\right)\tau}$. Then integrate from $\tau' = -\infty$ to τ . Finally, switch to relative time-delays.

Solution: This solution follows that of Boyd[16]. Start by doing a change of in Eq. 3.32 using

$$\rho_{nm}^{(1)}(\tau) = S_{nm}^{(1)}(\tau) e^{-\left(i\omega_{mn} + \frac{1}{T_2}\right)\tau}$$
(0.1)

$$\dot{\rho}_{nm}^{(1)}(\tau) = -\left(i\omega_{mn} + \frac{1}{T_2}\right)S_{nm}^{(1)}(\tau)e^{-\left(i\omega_{mn} + \frac{1}{T_2}\right)\tau} + \dot{S}_{nm}^{(1)}(\tau)e^{-\left(i\omega_{mn} + \frac{1}{T_2}\right)\tau}$$

Substitute

$$-\left(i\omega_{mn}+\frac{1}{T_2}\right)S_{nm}^{(1)}(\tau)e^{-\left(i\omega_{mn}+\frac{1}{T_2}\right)\tau}+\dot{S}_{nm}^{(1)}(\tau)e^{-\left(i\omega_{mn}+\frac{1}{T_2}\right)\tau}=\\-\left(i\omega_{mn}+\frac{1}{T_2}\right)S_{nm}^{(1)}(\tau)e^{-\left(i\omega_{mn}+\frac{1}{T_2}\right)\tau}-\frac{i}{\hbar}\left[\hat{W}(\tau),\rho^{(0)}\right]_{nm}$$
(0.2)

to get

$$\dot{S}_{nm}^{(1)}(\tau) = -\frac{i}{\hbar} \left[\hat{W}(\tau), \rho^{(0)} \right]_{nm} e^{+\left(i\omega_{mn} + \frac{1}{T_2}\right)\tau}$$
(0.3)

Integrate

$$S_{nm}^{(1)}(\tau) = -\frac{i}{\hbar} \int_{-\infty}^{\tau} \left[\hat{W}(\tau'), \rho^{(0)} \right]_{nm} e^{+\left(i\omega_{mn} + \frac{1}{T_2}\right)\tau'} d\tau' \tag{0.4}$$

Change variables back by substituting into Eq. 0.1

$$\rho_{nm}^{(1)}(\tau) = -\frac{i}{\hbar} \int_{\tau'=-\infty}^{\tau'=\tau} \left[\hat{W}(\tau'), \rho^{(0)} \right]_{nm} e^{-\left(i\omega_{mn} + \frac{1}{T_2}\right)(\tau-\tau')} d\tau' \qquad (0.5)$$

Put into relative delay times using $t=\tau$ and $t_1=\tau-\tau'$ so that when $\tau'=-\infty$ then $t=+\infty$ and when $\tau'=\tau$, t=0 (see figure below), which gives

$$\rho_{nm}^{(1)}(t) = +\frac{i}{\hbar} \int_0^\infty \left[\hat{W}(t-t_1), \rho^{(0)} \right]_{nm} e^{-\left(i\omega_{mn} + \frac{1}{T_2}\right)t_1} dt_1 \qquad (0.6)$$

Problem 3.8: Derive Eq. 3.49.

Solution: We define the density matrix of a pure state in the interaction picture:

$$\rho_I = |\psi_I\rangle \langle \psi_i|$$

Eq. 3.40 is formally equivalent to the time-dependent Schrödinger equation Eq. 3.18, replacing ψ by ψ_I and \hat{H} by \hat{W}_I . Performing the same steps as

4

Eqs. 3.19 and 3.20, we obtain Eq. 3.49 for a pure state. Since this equation is linear in $\rho_I,$ it also holds for a statistical average with

$$\rho_I = \sum_s p_s \rho_I^{(s)}$$