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Concepts and Methods of 2D Infrared
Spectroscopy

Peter Hamm and Martin T. Zanni

Answer Keys: Chapter 3

Problem 3.1: Show that one obtains ρ = ρ2 for the density matrix of a

pure state. Show that this is no longer true for a density matrix of a statis-

tical average. Verify these results for the examples ρ =

(
1/2 1/2

1/2 1/2

)
and

ρ =

(
1/2 0

0 1/2

)
.

Solution:

For the density matrix of a pure state described by a wavefunction Ψ, we

have:

ρ = |Ψ⟩⟨Ψ|

so

ρ2 = |Ψ⟩⟨Ψ|Ψ⟩⟨Ψ| = |Ψ⟩⟨Ψ|

since the middle part, ⟨Ψ|Ψ⟩, is the norm of the wavefunction, which we

assume to be one.

For ρ =

(
1/2 1/2

1/2 1/2

)
, we get:

ρ2 =

(
1/2 1/2

1/2 1/2

)
·
(

1/2 1/2

1/2 1/2

)
=

(
1/2 1/2

1/2 1/2

)

and for ρ =

(
1/2 0

0 1/2

)
:

ρ2 =

(
1/2 0

0 1/2

)
·
(

1/2 0

0 1/2

)
=

(
1/4 0

0 1/4

)
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Problem 3.2: Verify that there is no wavefunction |ψ⟩ whose density ma-

trix would be ρ =

(
1/2 0

0 1/2

)
Solution: The diagonal elements of a density matrix are defined as cnc

∗
m.

From the two diagonal element, one would conclude c0 = 1/
√
2 and c1 =

1/
√
2 (modulo an undetermined phase factor, but then, if it were a pure

state, the off-diagonal element would be ρ01 = c0c
∗
1.

Problem 3.3: Show that exactly one eigenvalue of a n× n-density matrix

of a pure state is 1, while all others are zero. Hint: Start with ρ = ρ2. Diag-

onalize with a matrix Q and compare the diagonal elements.

Solution:

Let Q be the unitary transformation matrix that diagonalizes ρ (which

exists since ρ is hermitian). Then:

Q−1ρQ = D

with D a diagonal matrix with the real eigenvalues of ρ. We calculate

D2 = Q−1ρQQ−1ρQ = Q−1ρρQ = Q−1ρQ = D.

Since D is diagonal, each diagonal element must fulfill d2ii = dii. The only

numbers which fulfill this equation are dii = 0 or dii = 1. Furthermore, the

transformation preserves the trace:

Tr(D) = Tr(Q−1ρQ) = Tr(ρQQ−1) = Tr(ρ) = 1.

Since the diagonal elements of D are either 0 or 1, and their sum is 1, only

one diagonal element can be 1 and all other are 0.

Problem 3.4: Starting from the definition of the trace of a matrix, Tr (A) ≡∑
nAnn, show that Tr (AB) = Tr (BA). Show furthermore that the trace is

invariant to cyclic permutation, Tr (ABC) = Tr (CAB) = Tr (BCA).

Solution: One particular element of the product of two matrices A and B

is:

(AB)nm =
∑
k

AnkBkm
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With that:

Tr(AB) ≡
∑
n

(AB)nn =
∑
n,k

AnkBkn =
∑
n,k

BknAnk = Tr(BA).

Then:

Tr ((AB)C) = Tr (C(AB)) .

etc.

Problem 3.5: Show that the trace of any density matrix is indeed Tr(ρ) = 1.

Solution: For a pure state:

Tr (ρ) =
∑
i

cic
∗
i = 1

results from the normalization of the wave function. For a mixed state,

Eq. 3.22, the same holds as long as each wavefunction ψs is normalized and

the statistical distribution is normalized as well,
∑

s ps = 1.

Problem 3.6: Show that the length of a Bloch vector corresponding to a

pure state is unity.

Solution: With Eq. 2.16, one obtains with a little bit of algebra for the

length of the Bloch vector:

B2
x +B2

y +B2
z = (c0c

∗
0 + c1c

∗
1)

2 = 1

due to the normalization of the wavefunction.

Problem 3.7: Derive Eq. 3.33 starting from Eq. 3.32. Hint: Do a change

of variables using ρ
(1)
nm(τ) = S

(1)
nm(τ)e

−
(
iωmn+

1
T2

)
τ
. Then integrate from τ ′ =

−∞ to τ . Finally, switch to relative time-delays.

Solution: This solution follows that of Boyd[16]. Start by doing a change

of in Eq. 3.32 using

ρ(1)nm(τ) = S(1)
nm(τ)e

−
(
iωmn+

1
T2

)
τ

(0.1)
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ρ̇(1)nm(τ) = −
(
iωmn +

1

T2

)
S(1)
nm(τ)e

−
(
iωmn+

1
T2

)
τ
+ Ṡ(1)

nm(τ)e
−
(
iωmn+

1
T2

)
τ

Substitute

−
(
iωmn +

1

T2

)
S(1)
nm(τ)e

−
(
iωmn+

1
T2

)
τ
+ Ṡ(1)

nm(τ)e
−
(
iωmn+

1
T2

)
τ
=

−
(
iωmn +

1

T2

)
S(1)
nm(τ)e

−
(
iωmn+

1
T2

)
τ − i

~

[
Ŵ (τ), ρ(0)

]
nm

(0.2)

to get

Ṡ(1)
nm(τ) = − i

~

[
Ŵ (τ), ρ(0)

]
nm

e
+
(
iωmn+

1
T2

)
τ

(0.3)

Integrate

S(1)
nm(τ) = − i

~

∫ τ

−∞

[
Ŵ (τ ′), ρ(0)

]
nm

e
+
(
iωmn+

1
T2

)
τ ′
dτ ′ (0.4)

Change variables back by substituting into Eq. 0.1

ρ(1)nm(τ) = − i

~

∫ τ ′=τ

τ ′=−∞

[
Ŵ (τ ′), ρ(0)

]
nm

e
−
(
iωmn+

1
T2

)
(τ−τ ′)

dτ ′ (0.5)

Put into relative delay times using t=τ and t1=τ − τ ′ so that when τ ′=-∞
then t=+∞ and when τ ′=τ , t=0 (see figure below), which gives

ρ(1)nm(t) = +
i

~

∫ ∞

0

[
Ŵ (t− t1), ρ

(0)
]
nm

e
−
(
iωmn+

1
T2

)
t1dt1 (0.6)

τ

t

t
1

τ′

Problem 3.8: Derive Eq. 3.49.

Solution: We define the density matrix of a pure state in the interaction

picture:

ρI = |ψI⟩⟨ψi|

Eq. 3.40 is formally equivalent to the time-dependent Schrödinger equation

Eq. 3.18, replacing ψ by ψI and Ĥ by ŴI . Performing the same steps as
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Eqs. 3.19 and 3.20, we obtain Eq. 3.49 for a pure state. Since this equation

is linear in ρI , it also holds for a statistical average with

ρI =
∑
s

psρ
(s)
I


