
1

Concepts and Methods of 2D Infrared
Spectroscopy

Peter Hamm and Martin T. Zanni

Answer Keys: Chapter 4

Problem 4.1: Show that a linear absorption spectrum is independent of
the phase of the incident light field.

Solution: Lets assume we have a pulse with arbitrary spectral phase φ(ω):

E(ω) = E′(ω)eiφ(ω)

whose time-domain representation E(t) might be very complicated. Since
it is not necessary a short pulse, we have to use the convolution Eq. 3.62
explicitly:

Esig(t) = i

∫ ∞

0
E(t− t1)R(1)(t1)dt1

Using the convolution theorem of the Fourier transformation (Appendix A),
we obtain for the frequency representation:

Esig(ω1) = iE(ω1)R(1)(ω1)

This signal is heterodyned by E(ω1) which also acts as local oscillator:

S(ω1) ∝ <(E(ω1)E∗
sig(ω1)) = =(E(ω1)E∗(ω1)R(1)(ω1))

The arbitrary phase factor cancels when evaluating E(ω1)E∗(ω1).

Problem 4.2: For an isolated vibrator, discuss the t2 dependence of the
intensity of the 2D IR peaks if the system undergoes a chemical reaction
from the first excited state so that population relaxation does not refill the
ground state.

Solution: In this case, response functions R1, R3, R4, and R6, all of which
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are in a |1〉〈1| population state during time period t2, would include a e−t2/T1

term, like in Eq. 4.19, but the term is missing in R2 and R5, since the ground
state is not refilled.

Problem 4.3: Plot the rephasing and non-rephasing spectra of a set of two
coupled oscillators for t2 = 0 and t2 equal to half the interstate coherence
times. How could these spectra be used to simplify the absorption spectra?

Solution: Feynman diagrams that are in a |i〉〈j| (with i 6= j) interstate
coherence state during time t2 contribute to peaks D,C in the rephasing
spectrum (Fig. 4.11), and in particular give rise to the cross peaks” on
the diagonal in the non-rephasing spectrum (Fig. 4.13). These diagrams
oscillate during time t2 due to the e−iωi,jt2 factor, see Eq. 4.38. The spectrum
measured at t2 equal to half the interstate coherence times will thus have
opposite sign, so when adding up both spectra, the diagrams containing
interstate coherences will be suppressed, less peaks a re present, and the
outcome will be the same as for a frequency-domain 2D IR spectrum (Sect.
4.4)

Problem 4.4: Should pump-probe spectra have signals at negative time-
delays? Hint: Consider a frequency resolved pump-probe experiment (Fig.
4.15a) with interchanged time-ordering of pump and probe pulses (i.e. neg-
ative delay times). Assume semi-impulsive pulses. Collect the Feynman di-
agrams that describe this experiment for a slightly anharmonic oscillator,
develop the response function and the signal as a function of pump-probe
delay time. You will have to take into account that the 3rd-order polarization
starts to emit only after the last field-interaction, which is the pump-pulse,
and not the probe pulse. As a consequence, probe pulse and 3rd-order po-
larization have a time lag when they interfere. Show that this leads to char-
acteristic beats at negative delay times, as shown in Fig. 4.18. This effect is
called a perturbed free induction decay.

Solution: In a pump-probe geometry, the probe pulse acts both as field
interaction (the first in this case) and local oscillator, kpr = kLO. Thus, the
pump pulse interacts with the sample twice, and does so one time with +kpu,
and the other time with +kpu. Thus, the relevant Feynman diagrams are:
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The response functions are:

R1(t3, t1) = R2(t3, t1) = −µ4
01e

−iω01(t1+t3)e−(t1+t3)/T2

R3(t3, t1) = +µ2
01µ

2
12e

−i(ω01t1+ω12t3)e−(t1+t3)/T2

Time t1 is the (negative) pump-probe delay time. The spectrometer in Fig.
4.15a performs a Fourier-transform with respect to time t3, so

Esig(ω3, t1) = e−iω01t1−t1/T2

(
2

i(ω3 − ω12)− 1/T2
− 2

i(ω3 − ω01)− 1/T2

)

t1

t30

Epr Epu

Esig

The signal field interferes with the probe pulse, which also acts as a local
oscillator. However, the time-origin of the probe pulse is different from that
of the signal field. In the figure above, we have set time t3 = 0 to the
point when the signal field starts, but then the probe pulse is peaks at time
t3 = −t1:

Epr(t3) = ELO(t3) ∝ δ(t3 + t1)

whose Fourier transform with respect to t3 is:

ELO(ω3; t1) ∝ eiω3t1

The signal field interferes on the detector with the local oscillator:

<(ELO(ω3)Esig(ω3; t1) = e−t1/T2 ·
<

(
e−i(ω01−ω3)t1

(
2

i(ω3 − ω12)− 1/T2
− 2

i(ω3 − ω01)− 1/T2

))
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We see that this effect gives rise to a signal that decays with the dephasing
time T2 towards negative pump-probe delay times t1. Evaluating the real
part reveals a complicated expression that reflects the oscillatory contribu-
tion in Fig. 4.18.

Problem 4.5: Now consider a pump-probe experiment of a vibrational tran-
sition with short but finite pump and probe pulses and the pump-probe delay
time set to zero. Draw the Feynman diagrams of all possible time-orderings
that occur during pulse overlap. The additional Feynman diagrams lead to
an effect that is sometimes called coherence spike or coherence artifact.

Solution: The Feynman diagrams relevant for properly time-ordered pump-
probe spectroscopy with the probe arriving after the pump pulse and without
pulse overlap are:

0 0

1 0

1 1

1 0

1 1

2 1
prk
r

+

puk
r

−

puk
r

+
puk
r

+ puk
r

+

puk
r

−

prk
r

+

puk
r

−

prk
r

+

0 0

1 0

1 1

1 0

1 1

2 1
prk
r

+

puk
r

−

puk
r

+ puk
r

+ puk
r

+
puk
r

−

prk
r

+

puk
r

−

prk
r

+

Note that we gave the two field interactions from the pump pulse a little
bit of time ordering, since the pulses are not exactly delta pulses. The top
row is the rephasing diagrams, the bottom row the non-rephasing diagrams,
and in total six diagrams contribute.

When pulses start to overlap in time, and we have to explicitly perform
the convolution of, e.g. Eq. 2.75. During this integration, all time orderings
appear, and one has to switch between set of Feynman diagrams whenever
one of the sign of the integration times t1, t2 or t3 change order. For time-
ordering pump− pump− probe, the normal” six Feynman diagrams shown
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above are seen, for time-ordering probe − pump − pump the Feynman dia-
grams discussed for problem 4.4, and for pump− probe− pump yet another
set of Feynman diagrams become relevant:
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In simple words, there are just many more Feynman diagrams that play
a role during pulse overlap, giving rise to the so-called coherent artifact.


