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Concepts and Methods of 2D Infrared
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Peter Hamm and Martin T. Zanni

Answer Keys: Chapter 5

Problem 5.1: Derive Eq. 5.26.

Solution: As stated in the text, there are several ways to solve this problem.

One way is the following. The integral that we need to compute is Eq. 5.19,

which is

⟨(Ẑ · α̂)(Ẑ · α̂)(Ẑ · β̂)(Ẑ · β̂) = 1

4π

∫
dΩcos2 θ2Zα cos

2 θZβ

where
∫
dΩ is the integral of the molecule over all possible orientations. Let’s

consider the case when we use θZα as the variable to integrate over so that

we get

=
1

4π

∫ 2π

0
dϕα

∫ π

0
dθZα sin θZα cos

2 θZα cos
2 θZβ

However, when θZα rotates, it also changes θZβ. Thus, we need to rewrite

θZβ in terms of θZα and the relative angle θαβ that is set by the molecular

conformation. One way to do this is to use the Spherical Harmonic Addition

theorem from Eq. 5.25. When written in trigonometric terms, it is

cos θZβ =
4π

3
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8π
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iϕαβ +
3

4π
cos θ cos θαβ

+
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sin θeiϕ sin θαβe

−iϕαβ ]

where θ ≡ θα and ϕ ≡ ϕα. When substituted into the integral above, there

are only two terms that survive the integration of
∫
dϕ, which leaves
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Problem 5.2: Derive the ratio analogous to Eq. 5.31 but for a 2D IR spec-

trum measured using a narrow band pump method like an etalon (Sect. 4.4).

Solution: Fig. 4.16 shows the Feynman diagrams for the cross peaks cre-

ated in the narrow band pump method. In these diagrams, the laser pulses

interact twice with j and then twice with i. Thus, we need ⟨ZjZjZiZi⟩ and
⟨ZjZjXiXi⟩, which are given in Table 5.1,

⟨ZjZjZiZi⟩ = (4P2 + 5)/45 (0.1)

⟨ZjZjXiXi⟩ = (5− 2P2)/45 (0.2)

so that the ratio

SZZZZ

3SZZXX
=

(4P2 + 5)

3(5− 2P2)
(0.3)

Problem 5.3: Using spherical harmonics, derive Eq. 5.53.

Solution: We need to solve the equation

⟨(α̂ · Êa(0)) (α̂ · Êa(t1)) (α̂ · Êa(t2)) (α̂ · Êa(t3))⟩

=

∫
dΩ3

∫
dΩ2

∫
dΩ1

∫
dΩ0(Êa(t3) · α̂)G(Ω3t3|Ω2)

(Êa(t2) · α̂)G(Ω2t2|Ω1)(Êa(t2) · α̂)G(Ω1t1|Ω0)(Êa(0) · α̂)p0(Ω0)

Since all the pulses are polarized along the Z-axis and it is the same transition

dipole for each interaction, we can write this equation in terms of spherical

harmonics using (see Appendix D)

(Ẑ · α̂) = cos θ

=

(
4π

3

)1/2

Y10(Ω)
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and the definition of the normalization constant p0(Ω0) to get

=

(
4π

3

)2 1

4π

∫
dΩ3

∫
dΩ2

∫
dΩ1

∫
dΩ0Y10(Ω3)G(Ω3t3|Ω2)

Y10(Ω2)G(Ω2t2|Ω1)Y10(Ω1)G(Ω1t1|Ω0)Y10(Ω0)

Using the definition of G(Ω1t1|Ω0) from Eq. 5.46, we can then solve the first

integral, which becomes∫
dΩ0Y10(Ω0)

∑
ℓm

Y ∗
ℓm(Ω1)Yℓm(Ω0)e

−ℓ(ℓ+1)Dt1 (0.4)

= Y ∗
10(Ω1)e

−2Dt1

since ∫
dΩ0Y10(Ω0)Yℓm(Ω0) = δℓ1δm0 (0.5)

The next integral can now be solved

e−2Dt1

∫
dΩ1Y

∗
10(Ω1)

∑
ℓm

Y ∗
ℓm(Ω2)Yℓm(Ω1)e

−ℓ(ℓ+1)Dt2Y10(Ω1) (0.6)

= e−2Dt1
[
(4π)−1/2Y00(Ω2) + (5π)−1/2e−6Dt2Y20(Ω2)

]
since (see Appendix D)∫

dΩ1Y
∗
10(Ω1)Yℓm(Ω1)Y10(Ω1) = (4π)−1/2δℓ0δm0 + (5π)−1/2δℓ2δm0 (0.7)

The next two integrals are done in a similar fashion to get the final answer.

Note that the terms that survive alternate between e−2Dt and e−6Dt for

each integral. Similarly, most pulse sequences alternate between vibrational

responses that are coherences and population decays. So e−2Dt usually cor-

relates to a vibrational coherence time and e−6Dt to a vibrational population

time. Can you write a pulse sequence that is an exception to this generality?

Problem 5.4: Derive Eq. 5.57 for a diagonal peak. At magic angle (θ =

54.7◦), one only measures population relaxation during t2. Is that also true

for the cross peaks?

Solution: To derive Eq. 5.57, just plug the quantities from Table 5.3 into Eq.

5.55. By setting θ=54.7◦, the rotational contribution dissappears, because

P2(cos θ) = 0. However, the analogous equation for the cross peaks has a
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more complicated relationship because one has to use terms in Table 5.3

that include both i and j transitions. As a result, rotational dynamics will

still be present in the response even when θ=54.7◦.

Problem 5.5: When switching between ⟨ZZZZ⟩ and ⟨ZXXZ⟩ with a

rephasing 2D IR pulse sequence the ratio of the peaks on the diagonal

should be 3. Explain why this is not the case for (a) non-rephasing and

(b) absorptive 2D IR spectra collected with impulsive pulses in a collinear

beam geometry.

Solution: (a) The non-rephasing pathways have both ”off-diagonal” and

”on-diagonal” cross peaks (see Fig. 4.13). As a result, the intensity along the

diagonal is a sum of both the standard diagonal peaks and the ”on-diagonal”

cross peaks. Thus, unless the cross peaks arise from transitions which are

perfectly parallel, the intensity of the 2D IR spectrum along the diagonal

will no longer decrease by a factor of 3. (b) The same answer applies, because

in the collinear geometry one also measures the non-rephasing spectrum.

Problem 5.6: Show that the angles between two transition dipoles can

be measured using the ratio of ⟨45◦,−45◦, 0◦, 0◦⟩ and ⟨75◦,−75◦, 0◦, 0◦⟩ in

a non-rephasing spectrum. Is this ratio preferable to ⟨90◦, 90◦, 0◦, 0◦⟩ and

⟨0◦, 0◦, 0◦, 0◦⟩ used in pump-probe style 2D IR methods?[153]

Solution: The ⟨45◦,−45◦, 0◦, 0◦⟩ and ⟨75◦,−75◦, 0◦, 0◦⟩ responses can be

written more generally as

⟨θ,−θ, 0◦, 0◦⟩ = ⟨(Z cos θ +X sin θ)(Z cos θ +X sin θ)ZZ⟩ (0.8)

= cos2 θ⟨ZZZZ⟩ − sin2 θ⟨XXZZ⟩

The cross peaks in the non-rephasing spectrum follow the ordering jjii, so

that we get the equation (using Table 5.1)

⟨θ,−θ, 0◦, 0◦⟩jjii = cos2 θ{4P2 + 5

45
} − {sin2 θ⟨5− 2P2

45
} (0.9)

and for the diagonal peaks the ordering is iiii, which gives

⟨θ,−θ, 0◦, 0◦⟩iiii = cos2 θ{1
5
} − {sin2 θ⟨ 1

15
} (0.10)

Thus, the orientational response of the diagonal peaks is ⟨45◦,−45◦, 0◦, 0◦⟩iiii =
0.07 and ⟨75◦,−75◦, 0◦, 0◦⟩iiii = −0.045, so that when we switch between the
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two the signal changes by a factor of -1.39. Therefore, the ratio for the cross

peaks that we want is

⟨45◦,−45◦, 0◦, 0◦⟩jjii
−1.39⟨75◦,−75◦, 0◦, 0◦⟩jjii

(0.11)

which is plotted in the figure below.
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Is this ratio preferable to the ⟨90◦, 90◦, 0◦, 0◦⟩ and ⟨0◦, 0◦, 0◦, 0◦⟩ used in to

measure the angles in a collinear absorptive spectrum? Compare this graph

to that in Fig. 5.5b. In Fig. 5.5b, the dynamic range of the measurement

is about (1 - 0.3)=0.7, whereas the dynamic range for the ratio derived in

this problem is about (0.88+0.18)=1.06. So, in that regard it is much more

accurate at measuring angles. However, the absolute signal strengths are

also much smaller, since ⟨ZZZZ⟩=0.3 whereas ⟨45◦,−45◦, 0, 0⟩=0.07, for

instance.

Problem 5.7: Explain how one experimentally measures the 5th-order ori-

entational response ⟨XXY Y ZZ⟩.

Solution: In order to get a projection along a third polarization axis, the

beams need to impinge on the sample from different spatial directions. e.g.

they cannot be collinear.


