Concepts and Methods of 2D Infrared Spectroscopy

Peter Hamm and Martin T. Zanni

Answer Keys: Chapter 5

Problem 5.1: Derive Eq. 5.26.

Solution: As stated in the text, there are several ways to solve this problem. One way is the following. The integral that we need to compute is Eq. 5.19, which is

$$
\left\langle(\hat{Z} \cdot \hat{\alpha})(\hat{Z} \cdot \hat{\alpha})(\hat{Z} \cdot \hat{\beta})(\hat{Z} \cdot \hat{\beta})=\frac{1}{4 \pi} \int d \Omega \cos ^{2} \theta_{Z \alpha}^{2} \cos ^{2} \theta_{Z \beta}\right.
$$

where $\int d \Omega$ is the integral of the molecule over all possible orientations. Let's consider the case when we use $\theta_{Z \alpha}$ as the variable to integrate over so that we get

$$
=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \phi_{\alpha} \int_{0}^{\pi} d \theta_{Z \alpha} \sin \theta_{Z \alpha} \cos ^{2} \theta_{Z \alpha} \cos ^{2} \theta_{Z \beta}
$$

However, when $\theta_{Z \alpha}$ rotates, it also changes $\theta_{Z \beta}$. Thus, we need to rewrite $\theta_{Z \beta}$ in terms of $\theta_{Z \alpha}$ and the relative angle $\theta_{\alpha \beta}$ that is set by the molecular conformation. One way to do this is to use the Spherical Harmonic Addition theorem from Eq. 5.25. When written in trigonometric terms, it is

$$
\begin{array}{r}
\cos \theta_{Z \beta}=\frac{4 \pi}{3}\left[\frac{3}{8 \pi} \sin \theta e^{-i \phi} \sin \theta_{\alpha \beta} e^{i \phi_{\alpha \beta}}+\frac{3}{4 \pi} \cos \theta \cos \theta_{\alpha \beta}\right. \\
\left.+\frac{3}{8 \pi} \sin \theta e^{i \phi} \sin \theta_{\alpha \beta} e^{-i \phi_{\alpha \beta}}\right]
\end{array}
$$

where $\theta \equiv \theta_{\alpha}$ and $\phi \equiv \phi_{\alpha}$. When substituted into the integral above, there are only two terms that survive the integration of $\int d \phi$, which leaves

$$
\begin{aligned}
& =\frac{4 \pi}{9} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta\left\{\left(\frac{3}{2 \pi}\right)^{2} \sin ^{3} \theta \cos \theta \sin ^{2} \theta_{\alpha \beta}+\left(\frac{3}{4 \pi}\right)^{2} \sin \theta \cos ^{4} \theta \cos ^{2} \theta_{\alpha \beta}\right\} \\
& =\frac{1}{15} \sin ^{2} \theta_{\alpha \beta}+\frac{1}{5} \cos ^{2} \theta_{\alpha \beta}
\end{aligned}
$$

2
$=\frac{1}{15}\left(2 \cos ^{2} \theta_{\alpha \beta}+1\right)$

Problem 5.2: Derive the ratio analogous to Eq. 5.31 but for a 2D IR spectrum measured using a narrow band pump method like an etalon (Sect. 4.4).

Solution: Fig. 4.16 shows the Feynman diagrams for the cross peaks created in the narrow band pump method. In these diagrams, the laser pulses interact twice with j and then twice with i. Thus, we need $\left\langle Z_{j} Z_{j} Z_{i} Z_{i}\right\rangle$ and $\left\langle Z_{j} Z_{j} X_{i} X_{i}\right\rangle$, which are given in Table 5.1,

$$
\begin{align*}
& \left\langle Z_{j} Z_{j} Z_{i} Z_{i}\right\rangle=\left(4 P_{2}+5\right) / 45 \tag{0.1}\\
& \left\langle Z_{j} Z_{j} X_{i} X_{i}\right\rangle=\left(5-2 P_{2}\right) / 45 \tag{0.2}
\end{align*}
$$

so that the ratio

$$
\begin{equation*}
\frac{S_{Z Z Z Z}}{3 S_{Z Z X X}}=\frac{\left(4 P_{2}+5\right)}{3\left(5-2 P_{2}\right)} \tag{0.3}
\end{equation*}
$$

Problem 5.3: Using spherical harmonics, derive Eq. 5.53.

Solution: We need to solve the equation

$$
\begin{aligned}
\left\langle\left(\hat{\alpha} \cdot \hat{E}_{a}(0)\right)\right. & \left.\left(\hat{\alpha} \cdot \hat{E}_{a}\left(t_{1}\right)\right)\left(\hat{\alpha} \cdot \hat{E}_{a}\left(t_{2}\right)\right)\left(\hat{\alpha} \cdot \hat{E}_{a}\left(t_{3}\right)\right)\right\rangle \\
& =\int d \Omega_{3} \int d \Omega_{2} \int d \Omega_{1} \int d \Omega_{0}\left(\hat{E}_{a}\left(t_{3}\right) \cdot \hat{\alpha}\right) G\left(\Omega_{3} t_{3} \mid \Omega_{2}\right) \\
& \left(\hat{E}_{a}\left(t_{2}\right) \cdot \hat{\alpha}\right) G\left(\Omega_{2} t_{2} \mid \Omega_{1}\right)\left(\hat{E}_{a}\left(t_{2}\right) \cdot \hat{\alpha}\right) G\left(\Omega_{1} t_{1} \mid \Omega_{0}\right)\left(\hat{E}_{a}(0) \cdot \hat{\alpha}\right) p_{0}\left(\Omega_{0}\right)
\end{aligned}
$$

Since all the pulses are polarized along the Z-axis and it is the same transition dipole for each interaction, we can write this equation in terms of spherical harmonics using (see Appendix D)

$$
\begin{aligned}
(\hat{Z} \cdot \hat{\alpha}) & =\cos \theta \\
& =\left(\frac{4 \pi}{3}\right)^{1 / 2} Y_{10}(\Omega)
\end{aligned}
$$

and the definition of the normalization constant $p_{0}\left(\Omega_{0}\right)$ to get

$$
\begin{aligned}
& =\left(\frac{4 \pi}{3}\right)^{2} \frac{1}{4 \pi} \int d \Omega_{3} \int d \Omega_{2} \int d \Omega_{1} \int d \Omega_{0} Y_{10}\left(\Omega_{3}\right) G\left(\Omega_{3} t_{3} \mid \Omega_{2}\right) \\
& Y_{10}\left(\Omega_{2}\right) G\left(\Omega_{2} t_{2} \mid \Omega_{1}\right) Y_{10}\left(\Omega_{1}\right) G\left(\Omega_{1} t_{1} \mid \Omega_{0}\right) Y_{10}\left(\Omega_{0}\right)
\end{aligned}
$$

Using the definition of $G\left(\Omega_{1} t_{1} \mid \Omega_{0}\right)$ from Eq. 5.46 , we can then solve the first integral, which becomes

$$
\begin{array}{r}
\int d \Omega_{0} Y_{10}\left(\Omega_{0}\right) \sum_{\ell m} Y_{\ell m}^{*}\left(\Omega_{1}\right) Y_{\ell m}\left(\Omega_{0}\right) e^{-\ell(\ell+1) D t_{1}} \tag{0.4}\\
=Y_{10}^{*}\left(\Omega_{1}\right) e^{-2 D t_{1}}
\end{array}
$$

since

$$
\begin{equation*}
\int d \Omega_{0} Y_{10}\left(\Omega_{0}\right) Y_{\ell m}\left(\Omega_{0}\right)=\delta_{\ell 1} \delta_{m 0} \tag{0.5}
\end{equation*}
$$

The next integral can now be solved

$$
\begin{align*}
e^{-2 D t_{1}} & \int d \Omega_{1} Y_{10}^{*}\left(\Omega_{1}\right) \sum_{\ell m} Y_{\ell m}^{*}\left(\Omega_{2}\right) Y_{\ell m}\left(\Omega_{1}\right) e^{-\ell(\ell+1) D t_{2}} Y_{10}\left(\Omega_{1}\right) \tag{0.6}\\
& =e^{-2 D t_{1}}\left[(4 \pi)^{-1 / 2} Y_{00}\left(\Omega_{2}\right)+(5 \pi)^{-1 / 2} e^{-6 D t_{2}} Y_{20}\left(\Omega_{2}\right)\right]
\end{align*}
$$

since (see Appendix D)

$$
\int d \Omega_{1} Y_{10}^{*}\left(\Omega_{1}\right) Y_{\ell m}\left(\Omega_{1}\right) Y_{10}\left(\Omega_{1}\right)=(4 \pi)^{-1 / 2} \delta_{\ell 0} \delta_{m 0}+(5 \pi)^{-1 / 2} \delta_{\ell 2} \delta_{m 0}
$$

The next two integrals are done in a similar fashion to get the final answer. Note that the terms that survive alternate between $e^{-2 D t}$ and $e^{-6 D t}$ for each integral. Similarly, most pulse sequences alternate between vibrational responses that are coherences and population decays. So $e^{-2 D t}$ usually correlates to a vibrational coherence time and $e^{-6 D t}$ to a vibrational population time. Can you write a pulse sequence that is an exception to this generality?

Problem 5.4: Derive Eq. 5.57 for a diagonal peak. At magic angle $(\theta=$ 54.7°), one only measures population relaxation during t_{2}. Is that also true for the cross peaks?

Solution: To derive Eq. 5.57, just plug the quantities from Table 5.3 into Eq. 5.55. By setting $\theta=54.7^{\circ}$, the rotational contribution dissappears, because $P_{2}(\cos \theta)=0$. However, the analogous equation for the cross peaks has a
more complicated relationship because one has to use terms in Table 5.3 that include both i and j transitions. As a result, rotational dynamics will still be present in the response even when $\theta=54.7^{\circ}$.

Problem 5.5: When switching between $\langle Z Z Z Z\rangle$ and $\langle Z X X Z\rangle$ with a rephasing 2D IR pulse sequence the ratio of the peaks on the diagonal should be 3. Explain why this is not the case for (a) non-rephasing and (b) absorptive 2D IR spectra collected with impulsive pulses in a collinear beam geometry.

Solution: (a) The non-rephasing pathways have both "off-diagonal" and "on-diagonal" cross peaks (see Fig. 4.13). As a result, the intensity along the diagonal is a sum of both the standard diagonal peaks and the "on-diagonal" cross peaks. Thus, unless the cross peaks arise from transitions which are perfectly parallel, the intensity of the 2D IR spectrum along the diagonal will no longer decrease by a factor of 3 . (b) The same answer applies, because in the collinear geometry one also measures the non-rephasing spectrum.

Problem 5.6: Show that the angles between two transition dipoles can be measured using the ratio of $\left\langle 45^{\circ},-45^{\circ}, 0^{\circ}, 0^{\circ}\right\rangle$ and $\left\langle 75^{\circ},-75^{\circ}, 0^{\circ}, 0^{\circ}\right\rangle$ in a non-rephasing spectrum. Is this ratio preferable to $\left\langle 90^{\circ}, 90^{\circ}, 0^{\circ}, 0^{\circ}\right\rangle$ and $\left\langle 0^{\circ}, 0^{\circ}, 0^{\circ}, 0^{\circ}\right\rangle$ used in pump-probe style 2D IR methods?[153]

Solution: The $\left\langle 45^{\circ},-45^{\circ}, 0^{\circ}, 0^{\circ}\right\rangle$ and $\left\langle 75^{\circ},-75^{\circ}, 0^{\circ}, 0^{\circ}\right\rangle$ responses can be written more generally as

$$
\begin{align*}
\left\langle\theta,-\theta, 0^{\circ}, 0^{\circ}\right\rangle & =\langle(Z \cos \theta+X \sin \theta)(Z \cos \theta+X \sin \theta) Z Z\rangle \tag{0.8}\\
& =\cos ^{2} \theta\langle Z Z Z Z\rangle-\sin ^{2} \theta\langle X X Z Z\rangle
\end{align*}
$$

The cross peaks in the non-rephasing spectrum follow the ordering $j j i i$, so that we get the equation (using Table 5.1)

$$
\begin{equation*}
\left\langle\theta,-\theta, 0^{\circ}, 0^{\circ}\right\rangle_{j j i i}=\cos ^{2} \theta\left\{\frac{4 P_{2}+5}{45}\right\}-\left\{\sin ^{2} \theta\left\langle\frac{5-2 P_{2}}{45}\right\}\right. \tag{0.9}
\end{equation*}
$$

and for the diagonal peaks the ordering is $i i i i$, which gives

$$
\begin{equation*}
\left\langle\theta,-\theta, 0^{\circ}, 0^{\circ}\right\rangle_{i i i i}=\cos ^{2} \theta\left\{\frac{1}{5}\right\}-\left\{\sin ^{2} \theta\left\langle\frac{1}{15}\right\}\right. \tag{0.10}
\end{equation*}
$$

Thus, the orientational response of the diagonal peaks is $\left\langle 45^{\circ},-45^{\circ}, 0^{\circ}, 0^{\circ}\right\rangle_{i i i i}=$ 0.07 and $\left\langle 75^{\circ},-75^{\circ}, 0^{\circ}, 0^{\circ}\right\rangle_{i i i i}=-0.045$, so that when we switch between the
two the signal changes by a factor of -1.39 . Therefore, the ratio for the cross peaks that we want is

$$
\begin{equation*}
\frac{\left\langle 45^{\circ},-45^{\circ}, 0^{\circ}, 0^{\circ}\right\rangle_{j j i i}}{-1.39\left\langle 75^{\circ},-75^{\circ}, 0^{\circ}, 0^{\circ}\right\rangle_{j j i i}} \tag{0.11}
\end{equation*}
$$

which is plotted in the figure below.

Is this ratio preferable to the $\left\langle 90^{\circ}, 90^{\circ}, 0^{\circ}, 0^{\circ}\right\rangle$ and $\left\langle 0^{\circ}, 0^{\circ}, 0^{\circ}, 0^{\circ}\right\rangle$ used in to measure the angles in a collinear absorptive spectrum? Compare this graph to that in Fig. 5.5b. In Fig. 5.5b, the dynamic range of the measurement is about $(1-0.3)=0.7$, whereas the dynamic range for the ratio derived in this problem is about $(0.88+0.18)=1.06$. So, in that regard it is much more accurate at measuring angles. However, the absolute signal strengths are also much smaller, since $\langle Z Z Z Z\rangle=0.3$ whereas $\left\langle 45^{\circ},-45^{\circ}, 0,0\right\rangle=0.07$, for instance.

Problem 5.7: Explain how one experimentally measures the $5^{t h}$-order orientational response $\langle X X Y Y Z Z\rangle$.

Solution: In order to get a projection along a third polarization axis, the beams need to impinge on the sample from different spatial directions. e.g. they cannot be collinear.

