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Concepts and Methods of 2D Infrared
Spectroscopy

Peter Hamm and Martin T. Zanni

Answer Keys: Chapter 6

Problem 6.1: With the rules from Appendix B, verify that the Hamilto-

nian in Eq. 6.2 translates into the Hamilton matrix in Eq. 6.5.

Solution: Lets consider for example the matrix element H4,6 =
√
2β12,

which originates from the basis functions |11⟩ and |20⟩:

H4,6 ≡ ⟨11|H|20⟩
= ⟨11|~ω1b

†
1b1 + ~ω2b

†
2b2 + β12(b

†
1b2 + b†2b1)|20⟩

The first two terms don’t contribute to this matrix element, because e.g.

⟨11|~ω1b
†
1b1|20⟩ = 2~ω1⟨11|20⟩ = 0. The one term that does contribute is

⟨11|β12b†2b1|20⟩ =
√
2β12⟨11|11⟩ =

√
2β12.

Problem 6.2: Verify that the Hamiltonian 6.10 translates into the Hamil-

ton matrix 6.11.

Solution: What is new in the Hamiltonian is the terms of the form e.g.

−∆
2 b

†
1b

†
1b1b1. Its acts on the basis function |20⟩ only (for example, since the

ladder climbs down lead to zero for all other basis states). Then:

−∆

2
⟨20|b†1b

†
1b1b1|20⟩ = −∆⟨20|20⟩ = −∆ (0.1)

Problem 6.3: Show that the terms b†ib
†
ibibi are related to V1122q

2
1q

2
2 in a

Taylor expansion of the potential energy surface. Why do we retain only the

term b†ib
†
ibibi, and not, e.g. bibibibi?
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Solution: To answer this problem, we need to write q21q
2
2 in terms of ladder

operators using qn = 1/
√
2(b†n + bn), such that

q21q
2
2 = (b†1 + b1)(b

†
1 + b1)(b

†
2 + b2)(b

†
2 + b2)

One gets lots of terms, two of which are b†ib
†
ibibi and bibibibi. We only re-

tain the quantum conserving terms, such as b†ib
†
ibibi, because they couple

nearly degenerate states. The specific term b†ib
†
ibibi contributes to the local

mode anharmonicity. The terms that couple different quantum states are

neglected. bibibibi is one such term, which couples ν=0 to ν=4, for example,

and thus should have a much smaller impact on the eigenstate energies than

the quantum conserving terms.

Problem 6.4: Show that the Hamiltonian in Eq. 6.5 would no longer be

block-diagonal if we were to include cubic anharmonicity, e.g. terms of the

sort V122q1q
2
2 in a Taylor expansion of the potential energy surface. Would

these coupling terms create cross peaks?

Solution: As in the previous problem, when we expand q1q
2
2, we obtain in

total 8 terms of the sort e.g. b†1b2b2 (and all possible permutations of whether

there is a † or not). However, since it is an odd number, it will necessarily

mean an overall excitation or de-excitation a one or three quanta. So, if

~ω1 and ~ω2 are similar, all these terms will be non-resonant, and hence

will contribute only little (that is different for a Fermi resonance where

~ω1 ≈ 2~ω2, see Chapter 6.8). Furthermore, these terms couple e.g. basis

functions |10⟩ with |02⟩, since the matrix element ⟨10|b†1b2b2|02⟩ ̸= 0, so the

Hamilton matrix Eq. 6.11. is no longer block diagonal.

Problem 6.5: With the rules from Appendix B, verify that we obtain for

the transition dipoles of an harmonic oscillator: ⟨1|µ̂|2⟩ =
√
2⟨0|µ̂|1⟩. To that

end, keep in mind that we have for a vibrational transition dipole operator

µ̂ = dµ/dq · q̂, where dµ/dq is the change of the molecular dipole with coor-

dinate q.

Solution: Start by writing the transition dipole operator using ladder op-

erators, which gives

µ̂ = dµ/dq · q̂ = dµ

dq

1√
2
(b† + b)
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We then evaluate the two matrix elements

⟨1|µ̂|2⟩ = ⟨1|dµ
dq

1√
2
(b† + b)|2⟩ = dµ

dq
⟨1|1⟩

⟨0|µ̂|1⟩ = ⟨0|dµ
dq

1√
2
(b† + b)|1⟩ = dµ

dq

1√
2
⟨0|0⟩

so that we arrive at our equality

⟨1|µ̂|2⟩ =
√
2⟨0|µ̂|1⟩

Problem 6.6: Diagonalize the two exciton matrix of the Hamiltonian in

Eq. 6.11 with ω1 = ω2 ≡ ω to get Eq. 6.13. Hint: Do a coordinate trans-

formation into a basis set defined by |2±⟩ = 1/
√
2(|02⟩ ± |20⟩), which will

create a block diagonal 2-exciton Hamiltonian that can then be analytically

diagonalized.

Solution: Using the hint, we can calculate the matrix elements we need to

rewrite the 2-quantum Hamiltonian in the new basis set of |11⟩,|2+⟩, and
|2−⟩.

⟨11|H|2+⟩ = (⟨11|H|02⟩+ ⟨11|H|20⟩)1/
√
2

= (
√
2β +

√
2β)1/

√
2 = 2β

⟨11|H|2−⟩ = (⟨11|H|02⟩ − ⟨11|H|20⟩)1/
√
2

= 0

⟨2 + |H|2+⟩ = (⟨02|H|02⟩+ ⟨20|H|20⟩+ ⟨20|H|02⟩+ ⟨02|H|20⟩)1/2
= 2~ω −∆

The 2-quantum portion of the matrix in Eq. 6.11 now becomes 2~ω 2β 0

2β 2~ω −∆ 0

0 0 2~ω −∆

 (0.2)

where the columns are written in the order of |11⟩,|2+⟩, and |2−⟩. By doing

this coordinate transformation, we have block diagonalized the 2-quantum

Hamiltonian so that the ”asymmetric” stretch mode |2−⟩ ≡ |a⟩ is decoupled
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from the other two. The matrix is now fully diagonalized by diagonalizing

the remaining 2x2 Hamiltonian using

|S+⟩ = cos
θ

2
|11⟩+ 1

2
sin

θ

2
(|02⟩+ |20⟩)

|S−⟩ = − sin
θ

2
|11⟩+ 1

2
cos

θ

2
(|02⟩+ |20⟩)

(0.3)

where tan θ = 4|β|/∆.

The energies are

ES± =
1

2
(4~ω −∆)± Ω

Ea = 2~ω −∆

with

Ω =
1

2

√
(∆2 + 16β2)

It is interesting to look at the results in various coupling limits. For ex-

ample, if β2 ≫ ∆2, then Ω ≈ 2β so that ES± = 2~ω − ∆/2 ± 2β and

Ea = 2~ω −∆. If instead ∆2 ≫ β2, then Ω ≈ ∆/2 so that ES+ = 2~ω and

ES− = Ea = 2~ω −∆.

Problem 6.7: Calculate the dispersion relation of an exciton in a 310-helix

which has 3.2 residues per turn and βi,i+1 = 0.9 cm−1, βi,i+2 = −2.5 cm−1,

βi,i+3 = −2.8 cm−1, βi,i+4 = −0.8 cm−1 [128], and vanishing coupling

for larger distances. Calculate the expected splitting between the A and

E modes.

Solution: The dispersion relation is given by Eq. 6.35, which for this prob-

lem only has 4 terms:

Ek = ~ω0 + 2

[
0.9 cos

(
2πk

N

)
− 2.5 cos

(
4πk

N

)
− 2.8 cos

(
6πk

N

)
− 0.8 cos

(
8πk

N

)]
where the number of peptide units N is a large number. The A and E terms

are given by Eqs. 6.34 and 6.35, respectively. Thus, their frequencies are

given by

EA − ~ω0 = 2(0.9− 2.5− 2.8− 0.8) = −10.4

EE − ~ω0 = 2

[
0.9 cos

(
2π

3.2

)
− 2.5 cos

(
4π

3.2

)
− 2.8 cos

(
6π

3.2

)
− 0.8 cos

(
8π

3.2

)]
= −2.3
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so that the splitting is 8 cm−1.

Problem 6.8: Consider two coupled oscillators in a plane, like the two car-

bonyl groups in Fig. 6.1a. Using transition dipole coupling, determine the

sign of the coupling and the intensities of the two peaks in a linear infrared

spectra when one carbonyl is rotated out of the plane. Do the same for a

2D IR spectrum, predicting both the diagonal and cross peak intensities.

Solution: We define unit-less transition dipoles and a vector separating

both sites:

µ⃗1 =

 0

1

0


µ⃗2 =

 0

cosα

sinα


r⃗12 =

 1

0

0


One easily sees that we then have for the transition dipole coupling β12 =

cosα (Eq. 6.16). We assume that the monomers are identical, so ~ω1 = ~ω2.

The frequency shift relative to a monomer will then be β12 for the sym-

metric solution 1/
√
2 (|01⟩+ |10⟩) and −β12 for the antisymmetric solution

1/
√
2 (|01⟩ − |10⟩), see figure below:

0.5π 1π 1.5π 2π

-1

1
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( )100121 +

( )100121 −
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The intensities of the two transitions scale as:

Is = 1/2|µ⃗1 + µ⃗2|2

Ias = 1/2|µ⃗1 − µ⃗2|2,

see below:

0.5π 1π 1.5π 2π

1

2

rotation angle α

in
te
n
s
it
y

( )100121 +

( )100121 −

For α = 0, the intensity of the symmetric state is two times that of a

monomer, while the antisymmetric state is dark. For α = π/2, where the

coupling vanishes, both transitions are equally strong and they appear at

the same frequency. For α = π, the antisymmetric solution is the higher

frequency one and carries all oscillator strength.

The 2D IR spectrum is essentially that of Fig. 6.3c. The separation be-

tween both peaks is 2β12, as in the linear spectrum, the intensities of the

diagonal peaks scale as:

Is = 1/4|µ⃗1 + µ⃗2|4

Ias = 1/4|µ⃗1 − µ⃗2|4,

and those of the cross peaks as

Icross = 1/4|µ⃗1 + µ⃗2|2|µ⃗1 − µ⃗2|2(2 cos2 θs,as + 1)/3

(0.4)

The last term is an orientational factor, and we assume here parallel polar-

ization of all laser pulses (Eq. 5.26). However, in this particular case, the

transition dipoles of both eigenstates, 1/
√
2(µ⃗1 + µ⃗2) and 1/

√
2(µ⃗1 − µ⃗2),

are always mutually perpendicular, so there is no α-dependence of the ori-

entational term. The intensities of the diagonal peaks and the cross peak is

shown inthe figure below.
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Problem 6.9: The transition dipole strength of a vibrational mode can be

determined from its infrared spectrum. The integrated absorption coefficient

A is the integral of the molar absorption coefficient, ϵ over the band[6]

A =

∫
ϵ(ν)dν (0.5)

which is related to the transition dipole by

|µ01|2(m2C2) =
3~ncε0 ln 10
πν0NA

A = 1.02× 10−61 × A(M−1cm−2)

ν0(cm−1)
(0.6)

where the units are given in the parenthesis, ε0 is the permutivity of free

space, n is the index of refraction,NA is Avogadro’s number, and ν0 = ω0/2π

is the center frequency of the band. (a) Do a unit analysis and verify the con-

stant (constants are given in Appendix C). (b) Given that a protein with

18 residues has a maximum ϵ of 8000 M−1cm−1 and a spectral width of

40 cm−1 for the amide I band, estimate the transition dipole strength |µ01|
for a single residue in Debye.

Solution: (a) Verifying units:

3~ncε0 ln 10
πNA

= 3(1.054 · 10−34Js)(3 · 1010cms−1)(8.854 · 10−12C2s2kg−1m−3)

×(100−3m3cm−3) ln 10

= 1.02 · 10−61(m2C2)mmolcm−2 = 1.02 · 10−61(m2C2)Mcm

(b) Given that the amide I band has a frequency of about 1600 cm−1, we
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get

|µ01|2 = 1.02× 10−61Mcmm2C2 8000M
−1cm−140cm−1

1600cm−1

1

18 oscillators
= 1.13 · 10−60C2m2

|µ01| = 1.06 · 10−30Cm× D

3.33 · 10−30Cm
= 0.32D (0.7)

Problem 6.10: When calculating transition dipole strengths and couplings,

units must be done properly, which is not always straightforward. For in-

stance, the transition dipole moment, µ01 (debyes (D), Eq.6.36), is often

written[112]

µ01 =

(
~

8π2cν01

)1/2 ∂µ

∂q
=

(
4.1058

ν
1/2
01

)
∂µ

∂q
(0.8)

where ν01 (cm
−1) is the observed frequency, ∂µ/∂q is in units of D Å−1u−1/2

where u is the reduced mass, and the constant has units of Åu1/2 cm−1/2. q

is written in units of Åu1/2 so that the coordinate system is mass-weighted,

which is often used in normal mode analysis[174]. Derive the constant in

Eq. 0.8 by solving the integral for the transition dipole moment µ01 =

dµ/dq⟨0|q̂|1⟩. Hint: Use the following wavefunctions for a harmonic oscillator

to evaluate the integral: ψ0(q) = (απ )
1/4e−αq2/2 and ψ1(q) = ( α

4π )
1/42α1/2qe−αq2/2

where α =
√
ku/~2 (in SI units). Replace the force constant, k, with a con-

version to ν01.

Solution: We need to solve the integral

µ01 =
dµ

dq
⟨0|q̂|1⟩ = dµ

dq

∫
(
α

π
)1/4e−αx2/2x(

α

4π
)1/42α1/2xe−αx2/2dx

=
1

41/4
~1/2

(ku)1/4
dµ

dq

We now substitute in for k by relating it to the frequency of a harmonic

oscillator

ν01 =
1

2πc
(
k

u
)1/2

so that

k1/4 = (2πcν01)
1/2u1/4
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and

µ01 =
1

41/4
~1/2

(ku)1/4
dµ

dq
=

1

u1/2
(

h

8π2cν01
)1/2

dµ

dq

We now convert to mass weighted coordinates by multiplying by u1/2 to get

µQ01 = u1/2µ01 = (
h

8π2cν01
)1/2

dµ

dq

Problem 6.11: The amide I mode of N-methylacetamide has ∂µ/∂q=3.466

D Åu1/2. What is its transition dipole strength? Hint: Use the conversion

factor from Problem 6.10.

Solution:

µ01 =

(
4.1058Åu1/2cm−1/2

(1650cm−1)1/2

)
3.466

D

Åu1/2
= 14.2D

Problem 6.12: In some theory papers it is common to report couplings

between vibrational groups in units of mdyn/(Å u) where u is the reduced

mass. These units are used because β12 = ∂2V /∂q1∂q2, and so should have

units of a force constant (N/m) in mass weighted coordinates (1/u1/2). For

example, in one particular geometry Torii and Tasumi reported a coupling

constant of β=0.02 mdyn/(Å u) between two amide I stretches of triala-

nine[179]. Compute the coupling term in the Hamiltonian, namely β12q1q2,

in cm−1. Use the conversion factor in Problem 6.10 to convert β into units

of mdynÅ, which is energy. Then convert to cm−1. (Overview of units in

Appendix C.)

Solution:

0.02mdyn

×
Åu

(
4.1058Åu1/2cm−1/2

(1650cm−1)1/2

)2

× dyn

1000mdyn
× 1N

105dyn
× m

1010Å
× J

Nm

5.035 · 1022cm−1

J

= 10.6cm−1 (0.9)

Problem 6.13: Generate the normal mode Hamiltonian in Eq. 6.46 using
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the Dunham Expansion and the Darling-Dennison coupling terms.

Solution: We use Eq. 6.41 and 6.45 to generate the energies of the eigen-

states:

|00⟩ = ~ω +
3

4
x

|01⟩ = 2~ω − β +
11

4
x

|10⟩ = 2~ω + β +
11

4
x

|11⟩ = 3~ω +
27

4
x

|02⟩ = 3~ω − 2β +
23

4
x

|20⟩ = 3~ω + 2β +
23

4
x

(0.10)

We then subtract |00⟩ which shifts everything to

|00⟩ = 0

|01⟩ = ~ω + 2x− β

|10⟩ = ~ω + 2x+ β

|11⟩ = 2~ω + 6x

|02⟩ = 2~ω − 2β + 5x

|20⟩ = 2~ω + 2β + 5x

(0.11)

We then get the final answer by setting ν = ~ω + 2x and ∆ = −2x.

Problem 6.14: In Chapt. 1 we stated that 2D IR spectroscopy is not needed

to measure the coupling if one can isotope label the local modes. Given the

linear spectra in Fig. 6.14, two of which are from isotope labeled oscillators,

(a) find the unknowns ω1, ω2 and β. (b) Find the relative angles between

the transition dipoles. (c) Explain why the intensities of the isotope labeled

peaks are different.

Solution: The frequencies of a coupled set of oscillators is given by diago-
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nalizing the 2x2 Hamiltonian(
~ω1 β

β ~ω2

)
which has solutions

E± =
1

2
(~ω1 + ~ω2)±

1

2

√
(~ω1 − ~ω2)2 + 4β

|Ψ+⟩ = cos(θ/2)|ϕ1⟩+ sin(θ/2)|ϕ2⟩
|Ψ−⟩ = − sin(θ/2)|ϕ1⟩+ cos(θ/2)|ϕ2⟩

where

tan θ =
2β

~ω1 − ~ω2
(0.12)

(a) From the 3 spectra, we measure that the unlabeled spectra has transi-

tions at 1642 and 1674 cm−1, one of the labels gives frequencies 1590 and

1666 cm−1 and the other at 1599 and 1657 cm−1. The coupling will probably

be ¡20cm−1 since the spectrum of the non-isotope labeled peptide is split by

¡40cm−1. Thus, it would seem natural to assume that the isotope labeled

shift of ∼60 cm−1 enables one to directly measure ~ω1 and ~ω2 since it is

much larger than beta, which would give ~ω1=1666 cm−1 and ~ω2=1657

cm−1. Let’s check to see if that is consistent with the unlabeled spectra:

E+ = 1674 = 1651.5 +
1

2

√
92 + 4β2

E− = 1642 = 1651.5− 1

2

√
92 + 4β2

which gives β=11.7 cm−1 and β=19 cm−1 for the E+ and E− modes, re-

spectively, which is horrible agreement. Thus, the isotope labels must not

completely ”decouple” the two modes.

Instead, one could iteratively solve all 3 Hamiltonians to match data:(
~ω1 β

β ~ω2

)
(

~ω1 − δ β

β ~ω2

)
(

~ω1 β

β ~ω2 − δ

)
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which gives ~ω1=1653, ~ω1=1663, β=15, and δ=60 cm−1, with eigenvectors

|−⟩ = −0.81|ϕ1⟩+ 0.58|ϕ2⟩
|+⟩ = 0.58|ϕ1⟩+ 0.81|ϕ2⟩

(b) We can now use the eigenvectors and the ratio of the two peak intensities

(about 5:2) to get the relative angle θ between the transition dipole. Start

by projecting the transition dipole vectors into a coordinate system (placing

them in the xy-plane with reflection symmetry about the y-axis)

µ⃗1 = − sin θµ̂x + cos θµ̂y

µ⃗2 = sin θµ̂x + cos θµ̂y

and then calculate the ratio

2

5
=

|µ−|2

|µ+|2
=

| − 0.81µ⃗1 + 0.58µ⃗2|2

|0.58µ⃗1 + 0.81µ⃗2|2

=
|1.39 sin θµ̂x − 0.23 cos θµ̂y|2

|0.23 sin θµ̂x + 1.39 cos θµ̂y|2
(0.13)

Try a few angles and get θ=20◦ so that the relative angles between the two

is 40◦. (c) The intensities of the two peaks in the isotope labeled spectra

indicate that the two oscillators are not completely decoupled by the isotope

labeling. If they were decoupled, they would be equal so long as they had the

same local mode oscillator strengths (for instance, the two oscillators were

equivalent protein modes). It is interesting that even though the isotope

labeled shift is much larger than the coupling, it is still not large enough to

fully neglect.


